D04 | Quantitative Aspects of Immersive Analytics for the Life Sciences

Prof. Dr. Falk Schreiber, University of Konstanz
Email | Website

Falk Schreiber

Dr. Lewis L. Chuang, LMU
Email | Website

Lewis L. Chuang

Michael Aichem, University of Konstanz – Email | Website

Dr. Karsten Klein, University of Konstanz – Email | Website

Sabrina Jaeger-Honz, University of Konstanz – Email | Website

Stefan Feyer, University of Konstanz – Email | Website

Ying Zhang, University of Konstanz – Email | Website

Immersive Analytics (IA) is an emerging field that studies technologies facilitating a deep cognitive, perceptual and/or emotional involvement of humans when understanding and reasoning with data. The goal of this project is to investigate and quantify the impact of such technologies on immersion, and the role of immersion for data analytics. We aim to further develop the Immersive Analytics methodology and investigate the applicability of IA approaches to research tasks in the life sciences, with a particular focus on quantitative aspects of immersive analytics. We will design  immersive environments for selected applications of the life sciences  and develop new methodologies that allow us to put the human in the loop for an immersive experience during an analytics workflow.

Research Questions

How can we quantify immersion in an analytics process, and how can we quantify the impact of immersion?

How can we best support analytics and decision making tasks with Immersive Analytics approaches facilitated by new technologies?

What are new potentials and benets that IA brings for tasks in the life sciences, and how can we quantify them?

Fig. 1: Immersive Analytics (IA).


  1. Y. Zhang, K. Klein, O. Deussen, T. Gutschlag, and S. Storandt, “Robust Visualization of Trajectory Data,” it - Information Technology, vol. 64, no. 4–5, Art. no. 4–5, 2022, doi: doi:10.1515/itit-2022-0036.
  2. K. Klein, M. Sedlmair, and F. Schreiber, “Immersive Analytics: An Overview,” it - Information Technology, vol. 64, no. 4–5, Art. no. 4–5, 2022, doi: doi:10.1515/itit-2022-0037.
  3. D. Garkov, C. Müller, M. Braun, D. Weiskopf, and F. Schreiber, “Research Data Curation in Visualization: Position Paper,” in Proceedings of the Ninth Workshop on Evaluation and BEyond - methodoLogIcal approaches for Visualization (BELIV), 2022.
  4. F. Schreiber and D. Weiskopf, “Quantitative Visual Computing,” it - Information Technology, vol. 64, no. 4–5, Art. no. 4–5, 2022, doi: doi:10.1515/itit-2022-0048.
  5. D. Bienroth et al., “Spatially resolved transcriptomics in immersive environments,” Visual Computing for Industry, Biomedicine, and Art, vol. 5, no. 1, Art. no. 1, 2022, doi: 10.1186/s42492-021-00098-6.
  6. M. Kraus et al., “Immersive Analytics with Abstract 3D Visualizations: A Survey,” Computer Graphics Forum, 2021, doi: https://doi.org/10.1111/cgf.14430.
  7. M. Kraus, K. Klein, J. Fuchs, D. A. Keim, F. Schreiber, and M. Sedlmair, “The Value of Immersive Visualization,” IEEE Computer Graphics and Applications (CG&A), vol. 41, no. 4, Art. no. 4, 2021, doi: 10.1109/MCG.2021.3075258.
  8. M. Aichem et al., “Visual exploration of large metabolic models,” Bioinformatics, vol. 37, no. 23, Art. no. 23, May 2021, doi: 10.1093/bioinformatics/btab335.
  9. K. Klein, D. Garkov, S. Rütschlin, T. Böttcher, and F. Schreiber, “QSDB—a graphical Quorum Sensing Database,” Database, vol. 2021, no. 2021, Art. no. 2021, Nov. 2021, doi: 10.1093/database/baab058.
  10. K. Klein, M. Aichem, Y. Zhang, S. Erk, B. Sommer, and F. Schreiber, “TEAMwISE : synchronised immersive environments for exploration and analysis of animal behaviour,” Journal of Visualization, 2021, doi: 10.1007/s12650-021-00746-2.
  11. K. Klein et al., “Visual analytics of sensor movement data for cheetah behaviour analysis,” Journal of Visualization, 2021, doi: 10.1007/s12650-021-00742-6.
  12. B. Sommer et al., “Tiled Stereoscopic 3D Display Wall - Concept, Applications and Evaluation,” Electronic Imaging, vol. 2019, no. 3, Art. no. 3, 2019, doi: 10.2352/ISSN.2470-1173.2019.3.SDA-641.
  13. K. Klein, M. Aichem, B. Sommer, S. Erk, Y. Zhang, and F. Schreiber, “TEAMwISE: Synchronised Immersive Environments for Exploration and Analysis of Movement Data,” in Proceedings of the ACM Symposium on Visual Information Communication and Interaction (VINCI), 2019, pp. 9:1-9:5. doi: 10.1145/3356422.3356450.
  14. S. Jaeger et al., “Challenges for Brain Data Analysis in VR Environments,” in 2019 IEEE Pacific Visualization Symposium (PacificVis), 2019, pp. 42–46. doi: 10.1109/PacificVis.2019.00013.
  15. K. Klein et al., “Fly with the flock : immersive solutions for animal movement visualization and analytics,” Journal of the Royal Society Interface, vol. 16, no. 153, Art. no. 153, 2019, doi: 10.1098/rsif.2018.0794.
  16. K. Klein et al., “Visual Analytics for Cheetah Behaviour Analysis.,” in VINCI, 2019, pp. 16:1-16:8. [Online]. Available: http://dblp.uni-trier.de/db/conf/vinci/vinci2019.html#0001JMWHBS19
  17. M. Klapperstueck et al., “Contextuwall: Multi-site Collaboration Using Display Walls,” Journal of Visual Languages & Computing, vol. 46, pp. 35–42, 2018, doi: 10.1016/j.jvlc.2017.10.002.
  18. Y. Zhu et al., “Genome-scale Metabolic Modeling of Responses to Polymyxins in Pseudomonas Aeruginosa,” GigaScience, vol. 7, no. 4, Art. no. 4, 2018, doi: 10.1093/gigascience/giy021.
  19. M. de Ridder, K. Klein, and J. Kim, “A Review and Outlook on Visual Analytics for Uncertainties in Functional Magnetic Resonance Imaging,” Brain Informatics, vol. 5, no. 2, Art. no. 2, 2018, doi: 10.1186/s40708-018-0083-0.
  20. V. Yoghourdjian, T. Dwyer, K. Klein, K. Marriott, and M. Wybrow, “Graph Thumbnails: Identifying and Comparing Multiple Graphs at a Glance,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 12, Art. no. 12, 2018, doi: 10.1109/TVCG.2018.2790961.
  21. K. Marriott et al., Immersive Analytics, vol. 11190. Springer International Publishing, 2018. doi: 10.1007/978-3-030-01388-2.
  22. M. Ghaffar et al., “3D Modelling and Visualisation of Heterogeneous Cell Membranes in Blender,” in Proceedings of the 11th International Symposium on Visual Information Communication and Interaction, Växjö, Sweden, 2018, pp. 64–71. doi: 10.1145/3231622.3231639.
  23. M. de Ridder, K. Klein, and J. Kim, “Temporaltracks: Visual Analytics for Exploration of 4D fMRI Time-series Coactivation,” in Proceedings of the Computer Graphics International Conference (CGI), 2017, pp. 13:1-13:6. doi: 10.1145/3095140.3095153.
  24. H. T. Nim et al., “Design Considerations for Immersive Analytics of Bird Movements Obtained by Miniaturised GPS Sensors,” 2017. doi: 10.2312/vcbm.20171234.
  25. T. Chandler et al., “Immersive Analytics,” in Proceedings of the IEEE Symposium on Big Data Visual Analytics (BDVA), 2015, pp. 73–80. doi: 10.1109/BDVA.2015.7314296.