D04 | Quantitative Aspects of Immersive Analytics for the Life Sciences

Prof. Dr. Falk Schreiber, University of Konstanz
Email | Website

Falk Schreiber

Dr. Lewis L. Chuang, LMU
Email | Website

Lewis L. Chuang

Dr. Karsten Klein, University of Konstanz – Email | Website

Michael Aichem, University of Konstanz – Email | Website

Immersive Analytics (IA) is an emerging field that studies technologies facilitating a deep cognitive, perceptual and/or emotional involvement of humans when understanding and reasoning with data. The goal of this project is to investigate and quantify the impact of such technologies on immersion, and the role of immersion for data analytics. We aim to further develop the Immersive Analytics methodology and investigate the applicability of IA approaches to research tasks in the life sciences, with a particular focus on quantitative aspects of immersive analytics. We will design  immersive environments for selected applications of the life sciences  and develop new methodologies that allow us to put the human in the loop for an immersive experience during an analytics workflow.

Research Questions

How can we quantify immersion in an analytics process, and how can we quantify the impact of immersion?

How can we best support analytics and decision making tasks with Immersive Analytics approaches facilitated by new technologies?

What are new potentials and benets that IA brings for tasks in the life sciences, and how can we quantify them?

Fig. 1: Immersive Analytics (IA)


  1. de Ridder, M., Klein, K., & Kim, J. (2017). Temporaltracks: visual analytics for exploration of 4D fMRI time-series coactivation. In Proc. Computer Graphics Intl. Conference, 13:1-13:6. Computer Graphics Intl. Conference.
  2. Klapperstueck, M., Czauderna, T., Goncu, C., Glowacki, J., Dwyer, T., Schreiber, F., & Marriott, K. (2018). Contextuwall: multi-site collaboration using display walls. Journal of Visual Languages & Computing, 46, 35–42.
  3. Zhu, Y., Czauderna, T., Zhao, J., Klapperstueck, M., Maifiah, M. H. M., Han, M.-L., … Li, J. (2018). “Genome-scale metabolic modeling of responses to polymyxins in pseudomonas aeruginosa.” GigaScience, 7(4).
  4. Nim, H. T., Sommer, B., Klein, K., Flack, A., Safi, K., Nagy, M., … Schreiber, F. (2017). “Design Considerations for Immersive Analytics of Bird Movements Obtained by Miniaturised GPS Sensors". Eurographics WS Visual Computing for Biology and Medicine, online.
  5. de Ridder, M., Klein, K., & Kim, J. (2018). “A review and outlook on visual analytics for uncertainties in functional magnetic resonance imaging.” Brain Informatics, 5(2), 5.
  6. Chandler, T., Cordeil, M., Czauderna, T., Dwyer, T., Glowacki, J., Goncu, C., … Wilson, E. (2015). Immersive Analytics. BDVA, 1-8 73-80. Retrieved from http://dblp.uni-trier.de/db/conf/bdva/bdva2015.html#ChandlerCCDGGKK15
  7. Marriott, K., Schreiber, F., Dwyer, T., Klein, K., Henry Riche, N., Itoh, T., … Thomas, B. H. (2018). Immersive Analytics (By Springer; Springer, Ed.). Springer.
  8. Rohn, H., Junker, A., Hartmann, A., Grafahrend-Belau, E., Treutler, H., Klapperstück, M., … Schreiber, F. (2012). “Vanted v2: a framework for systems biology applications.” BMC Systems Biology, 6(1), 139.