L. Joos, B. Jäckl, D. A. Keim, M. T. Fischer, L. Peska, and J. Lokoč, “Known-Item Search in Video: An Eye Tracking-Based Study,” in
Proceedings of the 2024 International Conference on Multimedia Retrieval (ICMR ’24), in Proceedings of the 2024 International Conference on Multimedia Retrieval (ICMR ’24). New York, NY, USA: ACM, 2024, pp. 311–319. doi:
10.1145/3652583.3658119.
BibTeX
L. Joos
et al., “Evaluating Node Selection Techniques for Network Visualizations in Virtual Reality,” in
ACM Symposium on Spatial User Interaction, in ACM Symposium on Spatial User Interaction. New York, NY, USA: ACM, 2024, pp. 1–11. doi:
10.1145/3677386.3682102.
BibTeX
F. L. Dennig, M. Miller, D. A. Keim, and M. El-Assady, “FS/DS: A Theoretical Framework for the Dual Analysis of Feature Space and Data Space,”
IEEE Transactions on Visualization and Computer Graphics, pp. 1–17, 2023, [Online]. Available:
https://ieeexplore.ieee.org/document/10158903BibTeX
Q. Q. Ngo, F. L. Dennig, D. A. Keim, and M. Sedlmair, “Machine Learning Meets Visualization – Experiences and Lessons Learned,”
it - Information Technology, vol. 64, pp. 169–180, 2022, doi:
10.1515/itit-2022-0034.
BibTeX
M. Kraus
et al., “Immersive Analytics with Abstract 3D Visualizations: A Survey,”
Computer Graphics Forum, 2021, doi:
10.1111/cgf.14430.
BibTeX
M. Kraus, K. Klein, J. Fuchs, D. A. Keim, F. Schreiber, and M. Sedlmair, “The Value of Immersive Visualization,”
IEEE Computer Graphics and Applications (CG&A), vol. 41, no. 4, Art. no. 4, 2021, doi:
10.1109/MCG.2021.3075258.
BibTeX
F. L. Dennig, M. T. Fischer, M. Blumenschein, J. Fuchs, D. A. Keim, and E. Dimara, “ParSetgnostics: Quality Metrics for Parallel Sets,”
Computer Graphics Forum, vol. 40, no. 3, Art. no. 3, 2021, doi:
10.1111/cgf.14314.
BibTeX
M. Blumenschein, L. J. Debbeler, N. C. Lages, B. Renner, D. A. Keim, and M. El-Assady, “v-plots: Designing Hybrid Charts for the Comparative Analysis of Data Distributions,”
Computer Graphics Forum, vol. 39, no. 3, Art. no. 3, 2020, doi:
10.1111/cgf14002.
BibTeX
M. Blumenschein, X. Zhang, D. Pomerenke, D. A. Keim, and J. Fuchs, “Evaluating Reordering Strategies for Cluster Identification in Parallel Coordinates,”
Computer Graphics Forum, vol. 39, no. 3, Art. no. 3, 2020, [Online]. Available:
https://diglib.eg.org:443/handle/10.1111/cgf14000BibTeX
L. Merino, M. Schwarzl, M. Kraus, M. Sedlmair, D. Schmalstieg, and D. Weiskopf, “Evaluating Mixed and Augmented Reality: A Systematic Literature Review (2009 – 2019),” in
IEEE International Symposium on Mixed and Augmented Reality (ISMAR), in IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 2020. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9284762BibTeX
M. Kraus
et al., “A Comparative Study of Orientation Support Tools in Virtual Reality Environments with Virtual Teleportation,” in
2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), in 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 2020, pp. 227–238. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9284697BibTeX
M. Kraus
et al., “Assessing 2D and 3D Heatmaps for Comparative Analysis: An Empirical Study,” in
Proceedings of the CHI Conference on Human Factors in Computing Systems, in Proceedings of the CHI Conference on Human Factors in Computing Systems. 2020, pp. 546:1-546:14. doi:
10.1145/3313831.3376675.
BibTeX
D. Schubring, M. Kraus, C. Stolz, N. Weiler, D. A. Keim, and H. Schupp, “Virtual Reality Potentiates Emotion and Task Effects of Alpha/Beta Brain Oscillations,”
Brain Sciences, vol. 10, no. 8, Art. no. 8, 2020, [Online]. Available:
https://www.mdpi.com/2076-3425/10/8/537BibTeX
BibTeX
D. R. Wahl
et al., “Why We Eat What We Eat: Assessing Dispositional and In-the-Moment Eating Motives by Using Ecological Momentary Assessment,”
JMIR mHealth and uHealth., vol. 8, no. 1, Art. no. 1, 2020, [Online]. Available:
https://mhealth.jmir.org/2020/1/e13191/BibTeX
M. Miller, X. Zhang, J. Fuchs, and M. Blumenschein, “Evaluating Ordering Strategies of Star Glyph Axes,” in
Proceedings of the IEEE Visualization Conference (VIS), in Proceedings of the IEEE Visualization Conference (VIS). IEEE, 2019, pp. 91–95. [Online]. Available:
https://ieeexplore.ieee.org/document/8933656BibTeX
D. Pomerenke, F. L. Dennig, D. A. Keim, J. Fuchs, and M. Blumenschein, “Slope-Dependent Rendering of Parallel Coordinates to Reduce Density Distortion and Ghost Clusters,” in
Proceedings of the IEEE Visualization Conference (VIS), in Proceedings of the IEEE Visualization Conference (VIS). IEEE, 2019, pp. 86–90. [Online]. Available:
https://ieeexplore.ieee.org/document/8933706BibTeX
F. L. Dennig, T. Polk, Z. Lin, T. Schreck, H. Pfister, and M. Behrisch, “FDive: Learning Relevance Models using Pattern-based Similarity Measures,”
Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST), 2019, [Online]. Available:
https://ieeexplore.ieee.org/document/8986940BibTeX
C. Schätzle, F. L. Dennig, M. Blumenschein, D. A. Keim, and M. Butt, “Visualizing Linguistic Change as Dimension Interactions,” in
Proceedings of the International Workshop on Computational Approaches to Historical Language Change, in Proceedings of the International Workshop on Computational Approaches to Historical Language Change. 2019, pp. 272–278. [Online]. Available:
https://www.aclweb.org/anthology/W19-4734.pdfBibTeX
D. Sacha
et al., “SOMFlow: Guided Exploratory Cluster Analysis with Self-Organizing Maps and Analytic Provenance,”
IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 1, Art. no. 1, 2018, [Online]. Available:
https://ieeexplore.ieee.org/document/8019867BibTeX
M. Blumenschein
et al., “SMARTexplore: Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach,” in
Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST), R. Chang, H. Qu, and T. Schreck, Eds., in Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2018, pp. 36–47. [Online]. Available:
https://ieeexplore.ieee.org/document/8802486BibTeX
L. J. Debbeler, M. Gamp, M. Blumenschein, D. A. Keim, and B. Renner, “Polarized But Illusory Beliefs About Tap and Bottled Water: A Product- and Consumer-Oriented Survey and Blind Tasting Experiment,”
Science of the Total Environment, vol. 643, pp. 1400–1410, 2018, doi:
10.1016/j.scitotenv.2018.06.190.
BibTeX
D. Jäckle, M. Hund, M. Behrisch, D. A. Keim, and T. Schreck, “Pattern Trails: Visual Analysis of Pattern Transitions in Subspaces,” in
Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST), B. Fisher, S. Liu, and T. Schreck, Eds., in Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2017, pp. 1–12. [Online]. Available:
https://ieeexplore.ieee.org/document/8585613BibTeX
D. Jäckle, F. Stoffel, S. Mittelstädt, D. A. Keim, and H. Reiterer, “Interpretation of Dimensionally-Reduced Crime Data: A Study with Untrained Domain Experts,” in
Proceedings of the Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), in Proceedings of the Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), vol. 3. 2017, pp. 164–175. [Online]. Available:
https://bib.dbvis.de/publications/details/697BibTeX
M. Behrisch
et al., “Magnostics: Image-Based Search of Interesting Matrix Views for Guided Network Exploration,”
IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, Art. no. 1, 2017, [Online]. Available:
https://ieeexplore.ieee.org/document/7534849BibTeX
L. Merino
et al., “On the Impact of the Medium in the Effectiveness of 3D Software Visualizations,” in
Proceedings of the IEEE Working Conference on Software Visualization (VISSOFT), in Proceedings of the IEEE Working Conference on Software Visualization (VISSOFT). IEEE, 2017, pp. 11–21. [Online]. Available:
https://ieeexplore.ieee.org/document/8091182BibTeX
M. Stein
et al., “Bring it to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis,” in
IEEE Transactions on Visualization and Computer Graphics, in IEEE Transactions on Visualization and Computer Graphics, vol. 24. 2017, pp. 13–22. [Online]. Available:
https://ieeexplore.ieee.org/document/8019849BibTeX
C. Schulz
et al., “Generative Data Models for Validation and Evaluation of Visualization Techniques,” in
Proceedings of the Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization (BELIV), in Proceedings of the Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization (BELIV). ACM, 2016, pp. 112–124. doi:
10.1145/2993901.2993907.
BibTeX
M. Hund
et al., “Visual Analytics for Concept Exploration in Subspaces of Patient Groups,”
Brain Informatics, vol. 3, no. 4, Art. no. 4, 2016, doi:
10.1007/s40708-016-0043-5.
BibTeX
M. Hund et al., “Visual Quality Assessment of Subspace Clusterings,” in Proceedings of the KDD Workshop on Interactive Data Exploration and Analytics (IDEA), I. KDD 2016, Ed., in Proceedings of the KDD Workshop on Interactive Data Exploration and Analytics (IDEA). 2016, pp. 53–62.
BibTeX
M. Hund
et al., “Subspace Nearest Neighbor Search - Problem Statement, Approaches, and Discussion,” in
Similarity Search and Applications. International Conference on Similarity Search and Applications (SISAP). Lecture Notes in Computer Science, vol. 9371, G. Amato, R. Connor, F. Falchi, and C. Gennaro, Eds., in Similarity Search and Applications. International Conference on Similarity Search and Applications (SISAP). Lecture Notes in Computer Science, vol. 9371. , Springer, Cham, 2015, pp. 307–313. [Online]. Available:
https://link.springer.com/chapter/10.1007%2F978-3-319-25087-8_29BibTeX