R. Buchmüller, B. Jäckl, M. Behrisch, D. A. Keim, and F. L. Dennig, “cPro: Circular Projections Using Gradient Descent,” in
Proceedings of the 15th International EuroVis Workshop on Visual Analytics (EuroVA), The Eurographics Association, 2024. doi:
10.2312/eurova.20241111.
BibTeX
D. Blumberg, Y. Wang, A. Telea, D. A. Keim, and F. L. Dennig, “Inverting Multidimensional Scaling Projections Using Data Point Multilateration,” in
Proceedings of the 15th International EuroVis Workshop on Visual Analytics (EuroVA), The Eurographics Association, 2024. doi:
10.2312/eurova.20241112.
BibTeX
J. Fuchs, F. L. Dennig, M.-V. Heinle, D. A. Keim, and S. Di Bartolomeo, “Exploring the Design Space of BioFabric Visualization for Multivariate Network Analysis,”
Computer Graphics Forum, vol. 43, Art. no. 3, 2024, doi:
10.1111/cgf.15079.
BibTeX
L. Joos et al., “Evaluating Node Selection Techniques for Network Visualizations in Virtual Reality,” in
ACM Symposium on Spatial User Interaction, New York, NY, USA: ACM, 2024, pp. 1–11. doi:
10.1145/3677386.3682102.
BibTeX
F. L. Dennig et al., “The Categorical Data Map: A Multidimensional Scaling-Based Approach,” in
2024 IEEE Visualization in Data Science (VDS), IEEE, 2024, pp. 25–34. doi:
10.1109/vds63897.2024.00008.
BibTeX
L. Joos, B. Jäckl, D. A. Keim, M. T. Fischer, L. Peska, and J. Lokoč, “Known-Item Search in Video: An Eye Tracking-Based Study,” in
Proceedings of the 2024 International Conference on Multimedia Retrieval (ICMR ’24), New York, NY, USA: ACM, 2024, pp. 311–319. doi:
10.1145/3652583.3658119.
BibTeX
F. L. Dennig, M. Miller, D. A. Keim, and M. El-Assady, “FS/DS: A Theoretical Framework for the Dual Analysis of Feature Space and Data Space,”
IEEE Transactions on Visualization and Computer Graphics, pp. 1–17, 2023, [Online]. Available:
https://ieeexplore.ieee.org/document/10158903BibTeX
Q. Q. Ngo, F. L. Dennig, D. A. Keim, and M. Sedlmair, “Machine Learning Meets Visualization – Experiences and Lessons Learned,”
it - Information Technology, vol. 64, pp. 169–180, 2022, doi:
10.1515/itit-2022-0034.
BibTeX
M. Kraus, K. Klein, J. Fuchs, D. A. Keim, F. Schreiber, and M. Sedlmair, “The Value of Immersive Visualization,”
IEEE Computer Graphics and Applications (CG&A), vol. 41, Art. no. 4, 2021, doi:
10.1109/MCG.2021.3075258.
BibTeX
M. Kraus et al., “Immersive Analytics with Abstract 3D Visualizations: A Survey,”
Computer Graphics Forum, 2021, doi:
10.1111/cgf.14430.
BibTeX
F. L. Dennig, M. T. Fischer, M. Blumenschein, J. Fuchs, D. A. Keim, and E. Dimara, “ParSetgnostics: Quality Metrics for Parallel Sets,”
Computer Graphics Forum, vol. 40, Art. no. 3, 2021, doi:
10.1111/cgf.14314.
BibTeX
M. Kraus et al., “Assessing 2D and 3D Heatmaps for Comparative Analysis: An Empirical Study,” in
Proceedings of the CHI Conference on Human Factors in Computing Systems, 2020, pp. 546:1–546:14. doi:
10.1145/3313831.3376675.
BibTeX
D. Schubring, M. Kraus, C. Stolz, N. Weiler, D. A. Keim, and H. Schupp, “Virtual Reality Potentiates Emotion and Task Effects of Alpha/Beta Brain Oscillations,”
Brain Sciences, vol. 10, Art. no. 8, 2020, [Online]. Available:
https://www.mdpi.com/2076-3425/10/8/537BibTeX
D. R. Wahl et al., “Why We Eat What We Eat: Assessing Dispositional and In-the-Moment Eating Motives by Using Ecological Momentary Assessment,”
JMIR mHealth and uHealth., vol. 8, Art. no. 1, 2020, [Online]. Available:
https://mhealth.jmir.org/2020/1/e13191/BibTeX
M. Blumenschein, L. J. Debbeler, N. C. Lages, B. Renner, D. A. Keim, and M. El-Assady, “v-plots: Designing Hybrid Charts for the Comparative Analysis of Data Distributions,”
Computer Graphics Forum, vol. 39, Art. no. 3, 2020, doi:
10.1111/cgf14002.
BibTeX
M. Blumenschein, X. Zhang, D. Pomerenke, D. A. Keim, and J. Fuchs, “Evaluating Reordering Strategies for Cluster Identification in Parallel Coordinates,”
Computer Graphics Forum, vol. 39, Art. no. 3, 2020, [Online]. Available:
https://diglib.eg.org:443/handle/10.1111/cgf14000BibTeX
M. Kraus et al., “A Comparative Study of Orientation Support Tools in Virtual Reality Environments with Virtual Teleportation,” in
2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2020, pp. 227–238. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9284697BibTeX
L. Merino, M. Schwarzl, M. Kraus, M. Sedlmair, D. Schmalstieg, and D. Weiskopf, “Evaluating Mixed and Augmented Reality: A Systematic Literature Review (2009 – 2019),” in
IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2020. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9284762BibTeX
BibTeX
F. L. Dennig, T. Polk, Z. Lin, T. Schreck, H. Pfister, and M. Behrisch, “FDive: Learning Relevance Models using Pattern-based Similarity Measures,”
Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST), 2019, [Online]. Available:
https://ieeexplore.ieee.org/document/8986940BibTeX
M. Miller, X. Zhang, J. Fuchs, and M. Blumenschein, “Evaluating Ordering Strategies of Star Glyph Axes,” in
Proceedings of the IEEE Visualization Conference (VIS), IEEE, 2019, pp. 91–95. [Online]. Available:
https://ieeexplore.ieee.org/document/8933656BibTeX
D. Pomerenke, F. L. Dennig, D. A. Keim, J. Fuchs, and M. Blumenschein, “Slope-Dependent Rendering of Parallel Coordinates to Reduce Density Distortion and Ghost Clusters,” in
Proceedings of the IEEE Visualization Conference (VIS), IEEE, 2019, pp. 86–90. [Online]. Available:
https://ieeexplore.ieee.org/document/8933706BibTeX
C. Schätzle, F. L. Dennig, M. Blumenschein, D. A. Keim, and M. Butt, “Visualizing Linguistic Change as Dimension Interactions,” in
Proceedings of the International Workshop on Computational Approaches to Historical Language Change, 2019, pp. 272–278. [Online]. Available:
https://www.aclweb.org/anthology/W19-4734.pdfBibTeX
M. Blumenschein et al., “SMARTexplore: Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach,” in
Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST), R. Chang, H. Qu, and T. Schreck, Eds., IEEE, 2018, pp. 36–47. [Online]. Available:
https://ieeexplore.ieee.org/document/8802486BibTeX
L. J. Debbeler, M. Gamp, M. Blumenschein, D. A. Keim, and B. Renner, “Polarized But Illusory Beliefs About Tap and Bottled Water: A Product- and Consumer-Oriented Survey and Blind Tasting Experiment,”
Science of the Total Environment, vol. 643, pp. 1400–1410, 2018, doi:
10.1016/j.scitotenv.2018.06.190.
BibTeX
D. Sacha et al., “SOMFlow: Guided Exploratory Cluster Analysis with Self-Organizing Maps and Analytic Provenance,”
IEEE Transactions on Visualization and Computer Graphics, vol. 24, Art. no. 1, 2018, [Online]. Available:
https://ieeexplore.ieee.org/document/8019867BibTeX
D. Jäckle, M. Hund, M. Behrisch, D. A. Keim, and T. Schreck, “Pattern Trails: Visual Analysis of Pattern Transitions in Subspaces,” in
Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST), B. Fisher, S. Liu, and T. Schreck, Eds., IEEE, 2017, pp. 1–12. [Online]. Available:
https://ieeexplore.ieee.org/document/8585613BibTeX
L. Merino et al., “On the Impact of the Medium in the Effectiveness of 3D Software Visualizations,” in
Proceedings of the IEEE Working Conference on Software Visualization (VISSOFT), IEEE, 2017, pp. 11–21. [Online]. Available:
https://ieeexplore.ieee.org/document/8091182BibTeX
M. Stein et al., “Bring it to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis,” in
IEEE Transactions on Visualization and Computer Graphics, 2017, pp. 13–22. [Online]. Available:
https://ieeexplore.ieee.org/document/8019849BibTeX
D. Jäckle, F. Stoffel, S. Mittelstädt, D. A. Keim, and H. Reiterer, “Interpretation of Dimensionally-Reduced Crime Data: A Study with Untrained Domain Experts,” in
Proceedings of the Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), 2017, pp. 164–175. [Online]. Available:
https://bib.dbvis.de/publications/details/697BibTeX
M. Behrisch et al., “Magnostics: Image-Based Search of Interesting Matrix Views for Guided Network Exploration,”
IEEE Transactions on Visualization and Computer Graphics, vol. 23, Art. no. 1, 2017, [Online]. Available:
https://ieeexplore.ieee.org/document/7534849BibTeX
C. Schulz et al., “Generative Data Models for Validation and Evaluation of Visualization Techniques,” in
Proceedings of the Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization (BELIV), ACM, 2016, pp. 112–124. doi:
10.1145/2993901.2993907.
BibTeX
M. Hund et al., “Visual Quality Assessment of Subspace Clusterings,” in Proceedings of the KDD Workshop on Interactive Data Exploration and Analytics (IDEA), I. KDD 2016, Ed., 2016, pp. 53–62.
BibTeX
M. Hund et al., “Visual Analytics for Concept Exploration in Subspaces of Patient Groups,”
Brain Informatics, vol. 3, Art. no. 4, 2016, doi:
10.1007/s40708-016-0043-5.
BibTeX
M. Hund et al., “Subspace Nearest Neighbor Search - Problem Statement, Approaches, and Discussion,” in
Similarity Search and Applications. International Conference on Similarity Search and Applications (SISAP). Lecture Notes in Computer Science, vol. 9371, G. Amato, R. Connor, F. Falchi, and C. Gennaro, Eds., in Lecture Notes in Computer Science, vol. 9371. , Springer, Cham, 2015, pp. 307–313. [Online]. Available:
https://link.springer.com/chapter/10.1007%2F978-3-319-25087-8_29BibTeX